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A study of the effect of external straining and shearing flows on the evolution and form 
of breakup of vortex rings has been performed. Two orientations each of straining and 
shearing flows are considered. A theoretical analysis of the ring motion for small strain 
and shear rates is performed, and it is found that for shearing and straining flows in 
the plane of the ring, the ring may oscillate periodically. For a straining flow with 
compression normal to the initial plane of the ring, the linear theory predicts that the 
ring radius will expand with time. For shearing flow normal to the initial plane of the 
ring, the linear theory predicts tilting of the ring in the direction of the shear flow 
rotation. 

Numerical calculations are performed with both single vortex filaments and with a 
three-dimensional discrete vortex element method. The numerical calculations confirm 
the predictions of the linear theory for values of strain and shear rates below a certain 
critical value (which depends on the ratio R / r ,  of initial ring to core radii), whereas 
for strain and shear rates above this value the ring becomes very elongated with time 
and eventually pinches off. Three distinct regimes of long-time behaviour of the ring 
have been identified. Regime selection depends on initial ring geometry and orientation 
and on values of strain and shear rates. These regimes include (i) periodic oscillations 
with no pinching off, (ii) pinching off at the ring centre, and (iii) development of an 
elongated vortex pair at the ring centre and wider ‘heads’ near the ends (with pinching 
off just behind the heads). The boundaries of these regimes and theoretical reasons for 
the vortex behaviour in each case are described. It is also shown that the breakup of 
stretched vortex rings exhibits a self-similar behaviour, in which the number and size 
of ‘offspring’ vortices, at the point of pinching-off the ring, may be scaled by the 
product of the strain rate e (or shear rate s) and the oscillation period 7 of a slightly 
elliptical ring with mean radius R .  

1. Introduction 
There has been a great amount of recent interest in problems involving reconnection 

of vortex filaments and the breakup of vortex structures. For instance, a number of 
recent investigations have been made of the collision of two or more vortex structures, 
and in particular of vortex rings (e.g. Kida, Takaoka & Hussain 1991), and the 
subsequent breakup and reformation of the rings. Vortex structures may also break up 
owing to their own self-induced velocity, and the processes leading to breakup in these 
instances have been somewhat less studied. One example of such a process was 
demonstrated by Dhanak & Bernardinis (1981), who showed that an isolated, initially 
elliptical vortex ring can either undergo a periodic (or nearly periodic) oscillatory 
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motion or it can pinch off on itself (thus forming two rings), depending on the initial 
value of the ring aspect ratio. 

In the present paper, we examine the evolution and breakup of initially circular 
vortex rings which are subject to external straining or shearing flows. We find that 
under certain conditions the ring may achieve a periodic (or nearly periodic) 
oscillation, but that when these conditions are not satisfied the ring pinches off on itself. 
However, the pinching off is found to adopt a variety of forms depending on the initial 
geometry and orientation of the ring and the strain and shear rates. Of particular note, 
our results indicate that a vortex ring may break up to form ‘ offspring’ of unequal size 
and energy and that more than two offspring may result from the ring breakup. In fact, 
the results of the paper indicate a self-similarity in breakup of the ring that allows one 
to easily predict the sizes and form of the offspring. These features of vortex ring 
breakup which are demonstrated in the paper may have some relevance to development 
of multiplicative models of turbulent energy cascade, such as have been discussed by 
Mandelbrot (1974), Frisch, Sulem & Nelkin (1978) and Meneveau & Sreenivasan 
(1987, 1991). However, application of the present work to these and other problems is 
also restricted in the sense that the initial condition for the current analysis is always 
a circular vortex ring, and it is an open question whether solutions for such a 
configuration are at all indicative of the behaviour and breakup of more general classes 
of vortex structures in straining or shearing flows. A number of other applications of 
vortex rings in industrial processes, acoustics and environmental problems, to which 
the present results would be relevant, are described in the recent review by Shariff & 
Leonard (1 992). 

The paper uses three approaches, one theoretical and two computational, to solve 
for various aspects of the ring evolution when immersed in external straining and 
shearing flows. The first computational approach, which employs a model of the ring 
in the form of a single vortex filament that admits waves of variable core area along 
the vortex axis, is described in $2 along with a statement of the specific problem 
geometry. The evolution of the ring for small strain and shear rates is then analysed 
using a linear theory in $3.  In $44-7, we describe the results of the single filament 
computations for the nonlinear ring evolution. In $ 8, an alternative computational 
approach is presented using the three-dimensional discrete vortex element (DVE) 
algorithm of Knio & Ghoniem (1990). These DVE calculations are used both to 
examine the accuracy of and to extend the single filament computations for cases with 
an external straining flow. Cases involving reconnection or ‘collapse’ of the vortex 
cores and others involving local instability of the cores to the external flow are 
examined with the DVE computations. Some conclusions from the study are given 
in $9. 

2. Description of the vortex model and solution procedure 
In this paper, we consider the evolution of an initially circular vortex ring subject to 

a straining or shearing flow. An illustration of the four initial configurations considered 
in the paper is shown in figure 1 for external straining flows and in figure 2 for external 
shearing flows. For straining flows, these configurations include cases where the 
directions of both straining and compression lie in the initial plane of the vortex ring 
(called the ‘in-plane straining’ case) and cases where the direction of compression is 
normal to the initial plane of the ring (called the ‘normal straining’ case). For shearing 
flows, configurations are considered where the direction of the shear flow is in the 
initial plane of the ring (called the ‘in-plane shearing’ case) and where the shear flow 
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FIGURE 1.  Schematic of the initial configurations of the vortex rings for the case of external straining 
flow. In the in-plane straining (PST) case shown in (a), the directions of both stretching and 
compression lie in the initial plane of the ring. In the normal straining (NST) case shown in (b), the 
direction of compression is normal to the initial plane of the ring. 

FIGURE 2. Schematic of the initial configurations of the vortex ring for the case of external shearing 
flow. In the in-plane shearing (PSH) case shown in (a), the direction of external flow is in the initial 
plane of the ring. In the normal shearing (NSH) case shown in (b), the direction of external flow is 
normal to the initial plane of the ring. 

is normal to the initial plane of the ring (called the ‘normal shearing’ case). In order 
to facilitate reference to these various configurations in the remainder of the paper, we 
introduce acronyms in which the first letter, P or N, indicates whether the flow acts in 
the plane or normal to the plane of the ring and the second two letters, ST or SH, 
denote whether the flow is of the plane-strain or shearing type, respectively. Thus, the 
configurations in figures 1 (a), 1 (b), 2(a) and 2(b) are referred to as PST, NST, PSH and 
NSH, respectively. A Cartesian coordinate system is shown in figures 1 and 2 such that 
the axis C of the ring initially coincides with a circle of radius R in the ( y ,  z)-plane, and 
the vortex circulation r is such that the ring will initially propagate in the positive x- 
direction. For straining flows, the direction of stretching is always chosen to coincide 
with the y-axis, whereas compression may occur along either the x-axis (NST) or the 
z-axis (PST). In the case of shearing flows, the flow direction is in the ( y ,  z)-plane for 
PSH and in the (x,y)-plane for NSH. 

10-2 
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The evolution of the ring with time is solved for using a modified form of the so- 
called cutoff model (Moore & Saffman 1972) which admits axial wave motion on the 
vortex core. In this relatively simple model, the ring is represented by a single filament 
that is convected by the sum of three velocity fields: (i) the self-induced velocity uB of 
the ring, (ii) the external straining or shearing flow uE and (iii) an axial velocity wlz,, 
where lz3 is the unit tangent to C at time t and w is the axial velocity within the vortex 
core relative to the flow just outside the core. We let 5 denote the angle in the initial 
plane that coincides with some arbitrary point P on the ring axis C, where for 
definiteness we set [ = 0 on the positive z-axis. The parameter 6 can thus be used to 
identify material points on the ring axis. If r(t, LJ is the position vector to some point 
on the ring axis C at time t, the motion of the ring is determined by 

dr 
dt 
- = U , + U , + W l , ,  

where the external flow is given for the four configurations shown in figures 1 and 2 by 

1 eye, - eze, in PST, 

eyey-eexex in NST, 

in PSH, sye, 
‘ E =  I 

( syex in NSH. 

Here e is the strain rate, s is the shear rate, d/dt is the total derivative (keeping t fixed) 
and (ez, ey, e,) are base vectors in the x-, y- and z-directions. 

The self-induced velocity uB at some point t,, on C is obtained from the Biot-Savart 
integral, with a Rosenhead cutoff to avoid the singularity, as 

The parameter ,u, which is added to the denominator in (3) in order to avoid the 
singularity at 6 = to, is proportional to the core radius g(&, t )  and is given by 
,u = 26, cr. The constant 6, is related to the vorticity profile in the vortex core (Moore 
& Saffman 1972; Dhanak & Bernardinis 1981) by 

47c2w2g2 
ln(26,) = - $ - A - -  

r 2  ’ (4) 

where if the azimuthal velocity within the vortex core is given by v(r) = (r/27cr)flr/g), 
then the constant A is obtained as 

A = f’((r)-. s,’ : 
In the present paper, we consider vortices with uniform vorticity across the core, for 
which case A = :. 

The vortex core radius v is obtained from the condition that the vortex core is a 
material region for an inviscid fluid. Let us define a vector a,  which is everywhere 
tangent to the ring axis C (but not necessarily of unit length) by a, = ar/at, such that 
the magnitude of a, is 

(6) (a,,)’/’ = (a, - a,)’”. 
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The ratio of at point 
f is equal to the stretch of an infinitesimal material line segment of length ds centred 
at f and lying along the ring axis C. From the condition that the core volume of each 
section of the vortex is conserved and the relationship ds = (a,,)'/'d[, it follows that 
the volume of fluid xa2 ds contained in an infinitesimal material section of the core is 

at point f at any time t divided by the initial value of 

constant. An expression for the change in core radius with 

The unit tangent vector 1, to C is parallel to a,, so 

1, = u3/(a3,)1'z = 

time is then given by 

(7) 

Since one part of the vortex core may undergo greater or lesser stretching from the 
external flow than another part of the core, differences in core radius may evolve over 
time. However, variation in core area produces an axial force on the core fluid which 
gives rise to an axial motion within the core that acts to restore the core to a state of 
nearly uniform cross-sectional area. Since the response of the core is quite fast to such 
axial motions, several previous studies (e.g. Moore & Saffman 1972; Dhanak & 
Bernardinis 198 1) have simply restricted the core to be everywhere of uniform radius. 
We have adopted in this paper a somewhat less restrictive assumption and have instead 
allowed an internal axial core flow w(f ,  t) to exist. (In our computations, however, the 
core radius is found not to differ by more than about 10 YO between different sections 
of the ring at any given time, and the results would not therefore have differed 
significantly had we simply required the core radius to be uniform.) The equation for 
w is obtained from the vortex axial momentum equation as a simplification of the 
theories of Lundgren & Ashurst (1989) or Marshall (1991) as 

Aside from a factor of na2  times the fluid density, the left-hand side of (9) represents 
the rate of change of axial momentum due to motion along the core axis and the right- 
hand side represents the axial force on the core lateral surface. Equation (9) yields a 
solution for propagation speed of small-amplitude axisymmetric waves of variable core 
area on a vortex with ambient core radius vo as c = I'/2/8nv0, which is of the same 
form as the expression given by Kelvin (1880) but the constant differs by about 15 % 
owing to a difference in the assumed axial velocity profile. We note that the simple 
theory for vortex motion given in (1)-(9) can be obtained formally from the theories 
of Lundgren & Ashurst (1989) and Marshall (1991) using a multiple timescale 
perturbation method for small values of the parameter a/L, where L is a typical 
lengthscale along the vortex axis. The derivation makes use of the observation that the 
timescale for axisymmetric wave motion on the core is less than that for lateral 
displacement of the core axis (say, in the form of helical waves) by a factor of a /L  to 
systematically eliminate the higher-order terms in the vortex momentum equations. 
For the modified cutoff theory developed by Moore & Saffman (1972), there is also an 
implicit assumption that the self-induced velocity of the vortex is in the binormal 
direction to the vortex axis. One advantage of using this simplified formulation for the 
evolution of the vortex filament is that reliable methods exist for numerical solution of 
equation (9) for w and equations (lk(3) for the lateral displacement of the filament. 
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In the remainder of the paper, we non-dimensionalize all lengths by the core radius 
go, all velocities by the maximum value I‘/27tu0 of the azimuthal velocity on the initial 
plane (assuming a ‘thin’ vortex ring in which R/a % 1) and time by r /2nat .  The 
dimensionless versions of (lE(9) governing the ring motion can be obtained simply by 
setting r = 27t in these equations. 

In the numerical solutions presented in 994-7, the set of equations (1)-(9) for I([, t )  
and cr(6,t) are solved using a two-step predictor-corrector algorithm to advance in 
time. A three-point central difference is used for the derivative ar/a[ in the Biot-Savart 
integral (3) and in determining u and 1, from (7) and (8), and trapezoidal integration 
about the ring axis C is used to solve (3). Equation (9) for w is hyperbolic, so for 
purposes of numerical stability we have recast this equation in conservation form and 
solve it using MacCormack’s scheme (see Peyret & Taylor 1983, p. 48), which is a 
second-order accurate scheme in which forward spatial differences are taken on the 
predictor step and backward spatial differences on the corrector step. Calculations 
were done with 40C800 equal increments about the ring axis, although various 
symmetry properties of the ring across the y- and z-axes were used to reduce 
computational time for problems involving external straining flows. The computations 
were performed on a Cray X-MP and typically required less than 30 min of CPU time, 
with timesteps At ranging from 0.05 to 0.1 depending on the problem under 
consideration. Select runs with smaller timesteps were used to verify that the results 
were independent of the value of At. 

The dimensionless propagation speed c of a long axial wave on the core is 
approximately 0.11 /u (where we recall that the dimensionless core radius u equals 
unity on the initial plane). The CFL condition then states that the numerical solution 
of (9) is stable (cf. Press et al. 1989) so long as cAt < As, which for N segments about 
the ring axis implies that for stability we must choose At less than about 57.1 Ru/N.  
We typically selected At at about of this value. 

In solving these equations, a numerical instability was found to occur after a long 
time which causes a jaggedness of the ring axis and eventually results in blowing up of 
the computations. This instability also occurs when we require to be uniform about 
the ring, only somewhat later. The instability was eliminated by smoothing the changes 
in I and w at every timestep using a spectral filter introduced by Orszag & Gottlieb 
(1980). This filter involves three steps: (i) the changes in r and w at time t are written 
as Fourier series with N terms (the other terms being truncated), (ii) the coefficient of 
the nth term in the Fourier series is multiplied by the factor fn defined by 

where No is an adjustable parameter which we set to 2N, and (iii) the changes in I and 
w are recalculated from the truncated Fourier series. We usually took N x 30 in the 
computations, although variation of N for values over about 15 did not seem to affect 
the results very much. 

Before leaving this section, we offer some discussion on the shortcomings of the 
simple model described above. One feature already mentioned is that the model applies 
only to inviscid flows (since the volume of core fluid is assumed to be conserved), so 
that diffusion of vorticity is neglected. Thus, the model will not reproduce the Burgers 
(1948) solution in which a balance is achieved between concentration of vorticity by 
stretching and diffusion of vorticity for a uniformly stretched vortex filament. 
Similarly, vorticity expulsion (Pearson & Abernathy 1984; Moore 1985) would not be 
predicted by the model for a diffusing line vortex with a shear flow along the vortex 
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axis. Secondly, the vortex core is assumed to be everywhere circular in the model, so 
that instabilities of the core in the presence of straining and shearing flows (Moore & 
Saffman 1971; Kida 1981; Neu 1984) would not be observed in the calculations. 
Thirdly, it is implicit in the derivation of this model (see Moore & Saffman 1972) that 
the product of axis curvature K with core radius CT be small and that the separation 
distance L, between two opposing sections of the ring (in a direction normal to C )  be 
much larger than CT. Both of these assumptions are violated at various points of our 
computations. 

The applicability of this model to flows with an external shear, as is the case in the 
configuration shown in figure 2, is also somewhat in question since the stretching of the 
background vorticity field by the vortex velocity field is not accounted for. A scaling 
argument was given by Aref & Flinchem (1984) which suggests that neglect of this 
effect is approximately valid if the typical lengthscale of the external shearing flow is 
much greater than the vortex core radius. In terms of the current dimensionless 
variables, this result implies the restriction sR < 1. In the current computations, the 
value of the product sR varies between about 0.2 and 0.5, so this restriction is only 
marginally satisfied. 

3. Linear theory for small strain and shear rates 
For cases in which the strain rate e or the shear rate s multiplied by the characteristic 

time 7 of ring oscillation (in the axis-switching mode described by Dhanak & 
Bernadinis 1981) is small compared to unity, the ring remains nearly circular during 
several periods of oscillation. In fact, for some cases we will show that the ring will 
remain nearly circular indefinitely when e7 4 1 or s7 < 1, whereas in other cases the 
ring will become increasingly elongated in time for all values of e7 or s7. An analysis 
for nearly circular vortex rings is given in this section, which is an extension of the 
linear stability theory for vortex rings by Widnall & Sullivan (1973) and is based on the 
vortex model described in 92. 

We write the position r ( [ ,  t )  of the ring axis C at time t in terms of the polar base 
vectors e7 = cos (Q ey + sin (Q e, and eg = - sin (Q ey + cos (Q e, as 

where m indicates the mode and M is the number of modes under consideration. The 
functions (p,, p,, ym)  are in general complex, and it is understood that ( P - ~ ,  /Lm, 7-,) 
are equal to the complex conjugates of ( p m ,  P,, ym), respectively. For the case of nearly 
circular rings, we define a small parameter e by e = sup Ip,/RI and require that E < 1 
and that both Pm/R and y , / R  are O(E). The function R* is independent of time and 
is assumed to differ from the initial ring radius R by at most a factor of O(E), or 
R*(Q = R(1+ O(E)). Use of a function R* which differs slightly from the ring radius R 
in this term is useful for satisfying the initial conditions of the problem, as will be 
shown presently. The function Xc(t)  denotes the displacement of the mean ring 
position from the initial plane (where X , / R  = O(l)), and we define U = dX,/dt as the 
mean ring propagation speed. For the nearly circular case, the self-induced velocity 
was obtained by Widnall & Sullivan (1973) from the Biot-Savart integral to leading 
order in E as 

uB = Ue,+z C. [Cmym(t)eim~er+~,pm(t)eim5eX], (12) 
l M  

m--M 
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where C, and D ,  are real constants which depend on the mode m of oscillation. For 
R $- 1 (where we recall that lengths are non-dimensionalized by go), the results of 
Widnall & Sullivan (1973) give 

m2 1 -m2 
2R2 

c, = c-, N -~ ln(R), D, = D-, - -- 2R2 ln(R). 

The expressions (13) are valid for the leading order O(ln(R)) terms, but neglect the 
O(1) terms. 

The external flow to the ring, given by (2), may contain displacement of a material 
point on C in the Y, x and 6 directions. Differences in displacements in the 6 direction 
about the ring cause a convergence or divergence of the core material, which result in 
variation in core area about the ring. We assume in this linear theory (and justify the 
assumption by nonlinear computations) that variation in core area caused by 
displacements in the 6-direction from the external flow are resisted by the internal axial 
flow so as to make the core area nearly uniform for all time. On the basis of the 
assumption of constant core area, we ignore displacements in the &direction in the 
linear theory. From (2) and the relationship between Cartesian and polar base vectors, 
we can write the r and x components of the external flow as follows: 

(e[R* + (f) Cp, eimf] cos (2Q in PST, 

e[R* + (f) Cp, eimf] cosz(Q 

(s/2) [R" + (i) Cp, eimg] sin (25) 

in NST, 

in PSH, I uE-er  = 

l o  in NSH, 

0 in PST, 

- e[X, + (f) Cy, eimc] in NST, 

0 in PSH, I s[R* + (i) Cp, eim5] cos (6)  in NSH, 

and uE-ez = 

where C implies a sum over all modes from rn = - M  to M .  

taking the components of the resulting equation in the Y- and x-directions gives 
Substituting ( l lF(14)  into the equation of motion (1) for the vortex filament and 

The initial condition is that of a circular vortex ring in the ( y ,  z)-plane, so that 

l M  M 

R*(t)+T z p,(0)eimf = R, y,(O)e'"~ = 0, ( 1 6 4  b) 
m=-M m=-M 

for all 6. 
We now assume that a timescale T exists for oscillation of the vortex (to be 

determined presently), such that the products e7 and ST are O(E). If we then take 
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dX,/dt = U and substitute (14) into (15), keeping only terms of O(e) and lower, we 
obtain a set of equations for the radial and axial displacements of the ring as 

in PST, 

in NST, 

I 
I 

M 

[ p ,  eimt- C, 7, eimt] = 2eR* cos ( 2 0  

C, [p, eimc - D, pm eimt] = 0 

[ p ,  eimt- C, 7, eimc] = 2eR* cos2 (5) 

C, [p, eimc - D, p m  eimc] = - 2eXc 

m=-M 

M 

m=-M 

M 

m=-M 

M 

m=-M 

M \ 

in PSH, 

C. [ p ,  eimt- C ,  7, eimt] = SR* sin ( 2 0  

C, [jmeim~-Dmpmeimc] = 0 

m=-M 

M 

m=-M 

C, [p, eime- D, p m  eime] = 2sR* cos (0 
m=-M I 

It is noted that after multiplying the equations (17a-d) by the timescale 7 and 
substituting (16) for R*, all terms in the equations are of order e except for the terms 
related to the difference between R* and R, which are of order 2. For the purpose of 
solution of equations (17), dependence of R* on 5 is therefore negligible to order e;  
however, the dependence of R* on 5 does allow us to satisfy the initial condition (16) 
on the radial displacement of the vortex ring, as is shown for the following specific 
cases. 

The PST case in (17a) can be satisfied to O(e) using only the rn = Ifr 2 modes, which 
gives the leading-order solution for ring displacement as 

(18) 1 p,(t) = p-,(t) = beiat, 
Y2(t)  = Y-Jt) = -eR/C2+(iab/C,)eiat,) 

where 
overbar denotes the complex conjugate. The oscillation frequency 01 is given by 

is a complex constant which must be determined by initial conditions and an 

(19) 
The solution (18) yields a periodic oscillation in which the ring elongates (in the 
rn = f 2 mode) alternatively in the direction of stretch and that of compression of the 
external flow with a period 7 = 27r/a. If we include the O(1) terms in the expressions 
(1 3) for C, and D,, the dimensionless oscillation period 7 becomes 

(20) 

a = (- c, D2)1’2. 

7 = 47rR2[{ 4 In (R) + 4A - 0.22) {3 In (R) + 3A - 2. 23}]-1’2, 

which is the same period as obtained by Dhanak & Bernardinis (1981) for oscillation 
of elliptical vortex rings. In (20), the constant A is given by ( 5 )  in general and is equal 
to a for uniform vorticity profile across the core. From the initial condition (16b), we 
require that 
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6 = - ieR/a = - ierRl2.n. (22) 

In order to satisfy the other initial condition (16a), we set the function R*([) as 

R*(G = R-1 (0)e2i~-&-2(0)e-2i~ = R 1 --sin(2[) . (23) 
2 PZ [ ;: 1 

We note that max (R" - R) = O(er) and max (p/R) = O(er), as was previously 
assumed. 

For the NST case in (17b), we must include both the m = + 2  and m = 0 modes to 
obtain a solution for the displacement of the ring. Recalling that C, = D, = 0 from (13) 
and using the half-angle formula cos (2c) = 2 cos' ([) - 1, a solution to (17 b) for p m  and 
ym is obtained as 

yo(t)  = [-eeU+eRD,/2]t2, 

Here a is the same as given in (19). The m = & 2 mode gives an oscillation with period 
7 = 2n/a similar to that obtained for the PST case, but the m = 0 mode indicates that 
the ring radius will increase monotonically with time (becoming unbounded in the 
linear theory as t+co). The initial condition (16b) can be satisfied by setting 
~ ~ ( 0 )  = Y - ~ ( O )  = 0, which gives an expression for ,6 as 

b = - ieR/2a = - ierR/4x, (25) 

which is half the value obtained in (22) for PST. The initial condition (16a) can be 
satisfied by setting the function R* as 

For the PSH case in (17c), we again consider only modes m = 1 2  to obtain a 
solution of the form 

where again 01 is given by (19). The solution (27) yields a periodically oscillating 
solution (as in the PST case). The initial condition (16b) gives an equation for as 

6 = sR/2a = ~rR/471, (28) 

The other initial condition (16a) gives an equation for R*([) as 

1 
From (28)-(29), we find that max (R* - R) = O(ST) and max (p/R) = O(sr), as initially 
assumed. 

For the NSH case, a solution of (1 7 d )  and the initial conditions (1 6) is obtained with 
only the m = _+ 1 modes of the form 

(30) pl(t)  = p_,(t) = aC, sRt2, y l ( t )  = y-,(t) = sRt. 
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In obtaining (30), we have noted that D, = 0. The solution (30) indicates that the ring 
is tilted by the shear flow about the z-axis. The solution will break down at long time 
(since p1 and y1 become unbounded as t -+ co). 

4. Vortex ring in an in-plane straining flow (PST) 
The numerical procedure described in 92 is used in this section to solve for the 

nonlinear evolution of an initially circular vortex ring subject to an external in-plane 
straining flow. The ring evolution is found to fall into either of two categories 
depending on the value of the product e7. These categories are illustrated in figure 3 ,  
which shows plots of the variation with time of the aspect ratio of a projection of the 
ring in the ( y ,  z)-plane for an initial ring radius R = 10. In figure 3(a), for a strain rate 
e = 0.02, we observe that the ring aspect ratio varies periodically and alternately 
oscillates above and below unity, which is indicative of a motion in which the ring 
alternately elongates in the directions of stretching and compression of the external 
flow. The other type of motion is illustrated in figure 3(b), for a higher strain rate 
e = 0.05, which shows the aspect ratio increasing monotonically (and in fact nearly 
exponentially) in time, as is indicative of a ring elongating in the direction of stretching 
of the external flow without oscillation. 

A large number of computational runs indicate that the oscillating behaviour (as in 
figure 3a) is observed whenever the product e7 is below some critical value (e7&, 
which varies as a weak function of initial ring radius R (non-dimensionalized by initial 
core radius q0), where 7 is the oscillation period of a nearly circular ring given by (20). 
When e7 is above this critical value, the ring elongates continuously in the direction of 
stretching of the external flow and eventually pinches off on itself. Values of (e7),,it are 
given for four values of R in table 1, and we see that as R is increased by a factor of 
four, (e7),,it decreases only by about 10 YO. The uncertainty of the values given in table 
1, which is at most 4%,  is due to restrictions on the number of runs which could be 
performed. 

Profiles of the ring form during a cycle of oscillation (for the periodic case) are shown 
in figures 4 and 5 for the case R = 10 and e7 = 4.26. In these figures, and other figures 
of a similar form to be shown later, a circle is drawn about each of a series of points 
along the core axis on the normal plane to the axis. The radius of each circle is set equal 
to the core radius g(6, t) of the ring at that point. Unless otherwise mentioned, circles 
are drawn only at every fifth computational point along the ring. In figure 4, we show 
plan views of the ring (looking along the x-axis) at the initial plane and at four stages 
of the periodic motion. The circles are viewed from the side, so they appear as line 
segments in figure 4(a). The orientation of the ring with respect to the plane of view 
(in this case the ( y ,  2)-plane) can be estimated in these figures by observing the change 
in orientation of the small circles drawn about the core. The ring initially seems to be 
passively stretched by the external flow (figure 4b). However, after a certain amount 
of elongation is achieved, the self-induced motion counters the effect of the external 
flow and eventually reverses the minor and major axes of the ring, so that the ring 
becomes elongated in the direction of compression in the external flow (figure 4d). In 
figure 4(e), the ring has nearly returned to a circular shape with the core axis C in a 
plane parallel to the (y ,  z)-plane. 

The cycle of oscillation shown in figure 4 seems very similar to that predicted by the 
linear theory of § 3,  and the oscillation period is also within about 10 YO of the value of 
7 given by (20). However, some nonlinear effects are observed, as demonstrated by the 
square shape of the ring projection in figure 4(c) and the slight deviations from a 
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FIGURE 3. Variation with time of the aspect ratio of a projection of the ring axis in the (y,z)-plane 
for PST. Plots are for R = 10 and show (a) an oscillating ring (e = 0.02) and (b) an elongating ring 
(e = 0.05). 

Dimensionless initial 
ring radius R (e7Lt 

10 5.5$.0.1 
20 5.2 fO.15 
30 5.05 k0.05 
40 4.9 +0.2 

TABLE 1. Critical values of the product e7 for PST case, such that a ring will oscillate periodically 
for e7 < (e7),,it and elongate until pinching off for e7 > (e7)crit 

circular shape in figure 4(e). Our calculations followed the oscillation for about two 
cycles and seem to indicate periodic motion; however, it is not clear whether or not 
small effects due to nonlinear terms will build up over many oscillations to produce a 
gradual change in the oscillating ring. For instance, when e7 is very close to the critical 
value, we noticed that the mean core radius would decrease and the ring radius increase 
slightly during the first oscillation cycle. 
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FIGURE 4. Plan view of an oscillating ring (with R = 10 and e = 0.025) in PST for different stages of 
the periodic motion: (a) initial configuration ( t  = 0), (b) ring elongating in direction of stretching 
( t  = 62.5), (c) ring near half-period ( t  = 125), ( d )  ring elongating in direction of compression 
( t  = 187.5) and (e) ring after one full period ( t  = 257.5). 

(4 
FIGURE 5. Same data as in figure 4, but showing a side view looking along the direction of stretching. 
The propagation direction is downward in the figure. The ring attains a nearly planar shape after one 
full period. 
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FIGURE 6 .  Plan view of a ring (in PST) pinching off in the centre, with stretching rate e = 0.035 slightly 
greater than the critical value 0.0325 for R = 10, at four different stages of the motion: (a) initial 
configuration ( t  = 0), (b) stretched ring with straight sides ( t  = SO), (c) stretched ring with concave 
sides ( t  = loo), and ( d )  ring at the point of pinching off ( t  = 137.5). 

FIGURE 7. Same data as in figure 6, but showing a side view looking along the direction of 
stretching. The ring is propagating downward in the figure. 

A side view of the oscillating ring, looking down the y-axis, is shown in figure 5 (at 
the same times and for the same data as in figure 4). The ring is propagating downward 
in the picture, and we see that the elongated sections of the ring propagate faster than 
the compressed sections because of their greater curvature. The switching of the axes 
is evident in figure 5(d) by the elongation of the ring in the z-direction. In figure 5(e), 
we see that the ring returns to a nearly planar shape after one cycle of oscillation. 

A case showing evolution of a ring with R = 10 and e7 = 5.97, which is just slightly 
greater than the critical value (eT),,it = 5.5 in table 1, is plotted from a plan view 
(looking along the x-axis) in figure 6 and from a side view (looking along the y-axis) 
in figure 7. The ring is observed to elongate continuously in the direction of stretching 
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FIGURE 8. Plan view of a ring (in PST) with R = 20 and stretching rate e = 0.020 which is much larger 
than the critical value 0.010, showing development of an elongated centre section: (a) initial 
configuration ( t  = 0), (6) stretched ring with nearly straight sides ( t  = 80), (c) ring with concave sides 
( t  = 160), ( d )  ring with ‘heads’ at the ends and a thin, elongated vortex pair in the centre section 
( t  = 240), and ( e )  ring pinching off at two points located just behind each ‘head’ ( t  = 270). Every 
computational point is plotted in figures 8 and 9. 

of the external flow, and the more strongly curved part at the ends of the elongated 
sections again propagates faster than the straighter central sections. In figure 6 (c), we 
observe that the elongated central sections become concave inwards, which leads to 
pinching off in figures 6 ( d )  and 7(d). The pinching off occurs in the ring centre and 
somewhat resembles that observed by Dhanak & Bernardinis (1981) for elliptical rings 
with aspect ratio less than about 0.2; however, we note that for initially elliptical rings 
the pinching off occurs after one oscillation (i.e. along what is initially the minor axis) 
whereas in the present case the vortex is simply elongated by external stretching and 
pinches off along the elongated section. Although the model which we are using for 
these computations does not remain valid right up to the time at which the filaments 
touch, the computations suggest that reconnection of the ring at the point of pinching 
off will produce two offspring of equal size and energy which both have ring-like 
(although not entirely circular) shapes. 

Profiles of the ring evolution with R = 20 and e7 = 10.28, which is about twice the 
critical value (e7),,it = 5.2 given in table I ,  are shown in figures 8 and 9 (with all 
computational points plotted). Figure 8 is shown from a plan view (looking down the 
x-axis) and figure 9 is shown from the perspective of an observer located at point 
(x, y ,  z )  = (20,80,0). The ring is observed to elongate in the direction of stretching, and 
in figure 8(c )  the elongated central segments are shown to become concave. However, 
instead of pinching off in the middle as in figure 6, the vortex develops an elongated 
vortex pair in the central region and larger ‘heads’ on each end. The minimum 
separation of the two sides of the ring in figure 8 ( d )  does not occur at the middle, but 
at two points located just behind each of the heads. In figures 9(c) and 9(d) ,  we see that 
as the vortices in the central pair come closer together, the pair starts to propagate 
faster, and eventually overtakes the more highly curved heads at the ends of the ring. 
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t 

FIGURE 9. Same data as in figure 8, but with a (x,y, z) = (20,80,0) perspective view. Ring propagates 
to the right in each figure. Just prior to pinching off, the elongated centre section propagates very fast 
and eventually out-distances the heads. 

When the ring finally does pinch off in figures 8 (e) and 9(e), it does so at the two points 
just behind the heads. From these plots, it is reasonable to assume that after 
reconnection, the ring breaks up to form two smaller rings of equal size and energy and 
one elongated vortex pair. It is not clear from these calculations, however, how the 
vortex pair will evolve under further stretching. 

In order to explain why the elongated central vortex pair forms for high stretching 
rates, instead of merely pinching off at the ring centre, we recall that the mechanism 
leading to breakup of an elongated vortex ring is the long-range interaction between 
distant (and nearly parallel) parts of the vortex ring. The effect of the long-range 
interaction mechanism is illustrated by the well-known instability between a pair of 
nearly parallel vortices with opposite circulation described originally by Crow (1970) 
(commonly called the ‘Crow instability’), which can be used to develop a rough model 
for pinching off of the ring in the present case. For instance, suppose that we assume 
that one-half of the circumference of an elongated ring determines the maximum 
wavelength of displacement along the two elongated sides, and that an elliptical ring 
will be unstable (aside from some secondary effect due to curvature at the tips of the 
ring) when the sides of the vortex exhibit the Crow instability at this maximum (or any 
smaller) wavelength. Then when the ratio of core radius a to mean separation distance 
b between the opposing sides of the ring is small (i.e. a /b  < l), the ring is predicted to 
become unstable based on Crow’s analysis for aspect ratios less than about 1/2x. An 
increase in a / b  will increase somewhat this critical aspect ratio for instability. 

In figure 8 and in a number of plots to be shown in $05-7, we find that when the 
vortex is stretched by the external flow it can be elongated without pinching off to a 
point where the aspect ratio is considerably less than the minimum value suggested by 
Crow’s analysis. This observation is explained by the analysis of Marshall (1992), who 
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FIGURE 10. Ratio of y-coordinate Lpinch at the pinching-off point to the y-coordinate L at the ring tip 
at the time of pinching off versus the normalized strain rate for a ring in PST. The data are for an 
elongating ring (e7 > (e7)crit) and for the following values of R: 0, R = 10; a, R = 20; +, R = 40. 

showed that an external stretching flow tends to stabilize a vortex pair to the Crow 
instability. From this observation, we expect that if the stretching of the ring is strong 
enough, the ring can be elongated indefinitely without pinching off at the centre owing 
to the Crow instability mechanism. The curvature at the ends of the ring does 
eventually cause pinching off to occur near the heads (which is due to local curvature 
rather than long-range interaction), but at high stretching rates this happens at very 
low ring aspect ratios. 

The offspring of the ring after breakup are characterized by the length of the central 
vortex pair (if one is formed), by the effective radius of the ‘heads’ and by the core 
radius. The computational results indicate that stretched rings exhibit a sort of self- 
similarity in the course of breaking up; in particular, when certain ratios involving 
these quantities are plotted as functions of e ~ / ( e 7 ) , , ~ ~ ,  the results seem to be 
independent of the initial ring radius R. Let us denote by L p i n c h  the absolute value of 
the y-coordinate of the point at which pinching off first occurs (i.e. the half-length of 
the vortex pair) and by L the y-coordinate at the ring tip at the time of pinching off. 
Further, denote by Rhead the maximum z-coordinate of any point on the ring (i.e. the 
half-width of the head) and by gptnch the mean core radius at the time of pinching off. 
A plot of Lpinch/L versus log,, [~?7/(e7),,~~ - 11 is given in figure 10 for a series of runs 
perfomed with R = 10,20 and 40. As noted previously, the data in figure 10 seems to 
fall nearly onto one curve. It is observed in figure 10 that Lpinch/L equals zero for e7 
less than about 1.32 times (e7)crit, where the critical e7 is given in table 1, which 
corresponds to a run where the ring pinches off in the middle as shown in figures 6 and 
7. For runs with e7 > 1 . 3 2 ( e ~ ) , , ~ ~ ,  the value of Lpinch/L increases fairly rapidly to nearly 
unity, which corresponds to the formation of an elongated vortex pair in the central 
region as shown in figures 8 and 9. 
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FIGURE 11. Ratio of maximum z displacement Rhead of the ring at the time of pinching off to the initial 
ring radius R versus the normalized strain rate for a ring in PST. Symbols have the same meaning 
as in figure 10. The solid curve is the theoretical prediction from (31). 

The ratio R,,,,/R is plotted versus log,, [e7/(eT),,it - 11 in figure 1 1, and again the 
results seem to fall onto a single curve for R = 10, 20 and 40. The plot indicates that 
the radius of the offspring vortex rings, which form from the heads after reconnection 
of the ring, decreases as the strain rate increases for any given R. The core radius cpineh 
at the pinching off point (non-dimensionalized by the initial core radius c,,) is plotted 
versus [e7/(e7),,it - 13 in figure 12. The data points again seem to be tracing nearly the 
same curve for R = 10,20 and 40, although there seems to be more scatter in this case. 
We find that the mean core radius at pinching off decreases as the straining rate 
increases, as might have been expected. 

An explanation for the observed self-similar behaviour at breakup of the ring is 
given in terms of the following simple model. We note that the magnitude u of the 
induced velocity resulting from the tip of the vortex at any point on the vortex axis C 
varies as a function of distance s from the tip approximately as u = 1 /s (in terms of the 
present dimensionless variables). This induced velocity from the tip causes a curvature 
K of the elongated section of the vortex, which increases with time approximately as 
dK/dt z i32u/as2 = 2/s3. On the other hand, the stretching (at a rate e) of the vortex 
causes a decrease in curvature of the elongated sections at a rate dK/dt z -eK. When 
the rate of increase in curvature due to the tip induced velocity exceeds the decrease in 
curvature due to vortex stretching, the curvature of the elongated sections of the ring 
will increase in time. The self-induced velocity of the elongated sections due to this 
curvature causes them to come together and eventually to pinch off. 

From this argument, pinching off near the tips would be expected to occur first at 
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FIGURE 12. Dimensionless mean core radius B~~~~~ of the ring at the time of pinching off versus 
the normalized strain rate for a ring in PST. Symbols have the same meaning as in figure 10. 

a distance s = < (2/e)'12 from the vortex tip, where we set K = I / & & .  Recalling 
the expression (20) for 7,  and noting that (e7),,it in table 1 and the expression in 
brackets in (20) depend only weakly on R,  this criterion can be written as 

where f= log,,[- 1 + e ~ / ( e ~ ) , , ~ ~ ]  and C is a weak function of R given by 
C2 = 7 / [ 4 ~ R ~ ( e 7 ) , , ~ , ] .  For R between 10 and 40, our results indicate a mean value of 
C of 0.14, with about 10 % variation about this value depending on the value of R.  The 
prediction of the criterion ( 3  1) with C = 0.14 is plotted as a solid curve in figure 1 1 ,  and 
is found to compare well with the computational results. Considering the crudeness of 
the arguments used to obtain ( 3 1 ) ,  this agreement gives us confidence that the basic 
mechanism described above leading to the self-similarity in ring breakup is correct. It 
is noted that the basic mechanism leading to the criterion R,,,, < (1/e)'I2 does not 
depend on the vortex forming a ring, and would apply also to breakup of other 
structures such as stretched hairpin vortices. 

5. Vortex ring in a normal straining flow (NST) 
For a vortex ring subject to a normal straining flow, with compression along the 

x-axis, profiles of the ring evolution are shown from a plan view (looking along the 
x-axis) in figures 13 and 14 for a ring with initial radius R = 10 and with two different 
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FIGURE 13. Plan view of a ring in NST with initial radius R = 10 and strain rate e = 0.01. The ring 
radius is observed to increase with time, keeping a nearly circular shape, until at large times it 
elongates in the direction of stretching. (a) t = 0;  (b)  t = 100; (c) t = 200; ( d )  t = 300, (e) t = 400. 

(4 - 
(f) c'- 

FIGURE 14. Plan view of the axis of a ring in NST with R = 10 but with strain rate e = 0.05 which 
is higher than that in figure 13. The ring stretches by an enormous amount without pinching off. 
When the ring finally does pinch off, the total vortex length, from tip to tip, is over 2500. Pinching 
off occurs near the 'heads' of the ring and the separation of the vortex pair in the centre section stays 
fairly constant in time. (a) t = 0, (b)  t = 50, (c) t = 100, ( d )  t = 150, (e)  t = 200, (f) t = 250. 

values of the strain rate. In figure 13, with strain rate e = 0.01, the ring radius is 
observed to increase with time until a point is reached at which it begins elongating in 
the direction of stretching (figure 13e). The increase of ring radius agrees with the 
qualitative behaviour predicted for the NST case by the linear theory of $3,  even 
though the value of er = 1.7 is not small compared to unity. 
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The plots in figure 14 are for a strain rate e = 0.05 which is much higher than in the 
calculations shown in figure 13. Only the axis of the ring is plotted, and the thickness 
of the curve is not representative of the core radius. We see that for this high straining 
rate, the ring immediately starts elongating in the direction of stretching of the external 
flow. The separation distance between the elongated sides of the ring seems to remain 
nearly constant at the initial value (b z 2R), and even after enormous elongation there 
seems to be no inclination for the ring to pinch off in the centre section. Pinching off 
finally does occur near the ends of the ring, owing to the effect of curvature at the tip, 
but only after the aspect ratio decreases to less than 0.008. 

For the case in figure 14, we have that 2u/b < 0.1, so that if we ignore the effect of 
the external flow, the vortex pair should be unstable to the Crow instability for aspect 
ratios less than about 0.16. However, in the computations shown in figure 14 the aspect 
ratio decreases to 8 of this value without evidence of instability in the central section. 
In Marshall (1992), it is shown that three parameters characterize the stability of the 
stretched vortex pair, which can be written for the NST case as follows: (i) S / / 3  = 2u/b 
(where b is the separation distance between the vortex axes), (ii) /3 = 27tb/h (where h 
is the perturbation wavelength) and (iii) e = (e/27~)(b,/u,)~ (where b, and r, are the 
initial values of the vortex separation distance and core radius). For the problem 
shown in figure 14, we estimate that S / / 3  z 0.05, /3 z 0.05 and e z 3.18. Generally, the 
larger the value of E, the more resistant the vortex is to the Crow instability. For 
instance, a calculation in figure 2(c) of Marshall (1992) with S//3 = 0.3, /3 = 1 and 
e = 0.5 shows an almost immediate damping of the initial perturbation of the core, 
whereas the Crow (1970) analysis predicts this case to be unstable. 

6. Vortex ring in an in-plane shearing flow (PSH) 
For a vortex ring subject to an in-plane shearing flow, we again obtain a periodically 

oscillating motion of the ring for sufficiently small values of the product ST, in 
agreement with the results of the linear theory in $3. For instance, figure 15 shows plan 
views (looking along the x-axis) of a ring with R = 10 and shearing rate s = 0.03. The 
ring is observed to first elongate at about 45" to the direction of the shear flow (which 
coincides with the maximum direction of stretching in the external shear flow), and 
then to rotate clockwise so as to become elongated nearly in the direction of the shear 
flow in figure 15(c). At a later time the ring develops an elongation at 135" to the 
direction of the shear flow (which corresponds with the direction of maximum 
compression rate of the external shear) and finally returns to a nearly circular shape in 
figure 15(e). The period of oscillation in figure 15 is just over twice the value of 7 

obtained from (20), and this difference is thought to be due to nonlinear effects. The 
ring also did not return to a perfect circle at the end of the cycle in figure 15; however, 
the value of ST for this case is 5.1 1, which is much larger than the range ST 4 1 covered 
by the linear theory. 

A number of runs for rings with a variety of initial radii and in different shearing 
rates were run. It is found that, similar to the results for PST, a periodically oscillating 
solution is obtained for cases where the product s7 is less than some critical value, but 
an elongating solution in which the ring eventually pinches off is obtained for cases 
with s7 over this critical value. The critical values ( ~ 7 ) ~ ~ ~ ~  are found to depend weakly 
on initial ring radius R, and for any given R we find (surprisingly) that   ST),,^^ for the 
PSH case is exactly equal to the value of (e7),rit given in table 1 for the PST case. 

A plan view (looking down the x-axis) of a ring with R = 10 and for which the 
product ST = 8.53 is above the critical value 5.5 from table 1 is shown in figure 16. We 
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FIGURE 15. Plan view of an oscillating ring in PSH with R = 10 and s = 0.03 : (a)  initial configuration 
( t  = 0), (b) ring elongates at about 45" to the direction of shear ( t  = 50), (c) ring rotates so that the 
elongation direction is nearly in the direction of shear flow ( t  = 200), (d)  ring continues to rotate in 
a clockwise direction ( t  = 300), and (e) ring again adopts a nearly circular shape ( t  = 400). 

. .  . \  
& , $ '  

FIGURE 16. Plan view of an elongating ring in PSH with R = 10 and s = 0.05: (a)  initial configuration 
( t  = 0), (6) ring stretches and tilts ( t  = 62.5), (c) ring elongates at  about 45" to the shear direction 
( t  = 125) and ( d )  pinching off occurs at the ring centre ( t  = 180). 

FIGURE 17. Side view of the same data as in figure 16 looking perpendicular to the direction of shear 
flow in the plane of the ring (i.e. along the y-axis). The ring is observed to twist before it pinches off. 
Propagation of the ring is downwards in the figure. 

see that the ring elongates at about 45" to the direction of shear and eventually pinches 
off in the middle. Runs with higher shearing rates show the development of an 
elongated vortex pair in the ring centre, similar to the observations for PST in $4. A 
side view of the same data as in figure 16 is shown in figure 17, looking perpendicular 
to the direction of the shear flow in the plane of the ring (i.e. down the y-axis). The ring 
is observed to twist in figure 17(c) prior to the pinching off shown in figure 17(d). 

7. Vortex ring in a normal shearing flow (NSH) 
For a ring subject to a shearing flow which is initially oriented normal to the plane 

of the ring, the linear theory in $3 predicts that the ring will tilt with time as it is carried 
along by the shear flow. A side view, from the perspective of an observer at 
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FIGURE 18. Perspective view with (x, y ,  z )  = (0,40,200) of the evolution of a vortex ring in NSH with 
R = 10 and s = 0.05, showing tilting and stretching of the ring in the direction of shear. The 
separation of the ring legs remain nearly equal to 2R in the ring centre as the ring elongates. The ring 
propagates downward (in the --y-direction) and is swept backward (in the -x-direction) by the shear 
flow (the figure is not intended to depict the relative position of the ring). The left-hand side of the 
ring has induced velocity which opposes the shear flow, and it seems to maintain a nearly constant 
orientation to the shear flow direction and stretches with time. The right-hand part of the ring has 
induced velocity which is in the same direction as the shear flow, so it continues to rotate in a 
clockwise direction. (a) t = 0 ;  (b) t = 100; (c) = 200; (d) t = 300; (e) t = 400. All computational 
points are plotted for (d) and (e) .  

(x,y,z) = (0,40,200), of a ring with R = 10 and s = 0.05 is shown in figure 18. The 
initial stages of the ring evolution (not plotted) show a clockwise tilting as would be 
expected from the linear theory. After considerable tilt has occurred, we note that the 
left-hand side of the ring (which propagates against the shear flow) becomes aligned at 
a nearly constant direction to the direction of shear. This left-hand side maintains this 
orientation and elongates with time under the stretching imposed by the shear flow, in 
a form which appears to be very similar to the ‘hairpin’ vortices that are commonly 
noted in turbulent shear flows. The right-hand side of the ring (which propagates in the 
same direction as the shear flow) does not attain a fixed orientation to the shear, but 
instead continues to rotate around until it is oriented nearly opposite to the original 
propagation direction in a hook-like shape. The ring seems to continue elongating with 
time in the form shown in figure 18(e), and no pinching off of the ring was observed. 

8. Discrete vortex element simulations 
In this section, the three-dimensional discrete vortex element (DVE) method of Knio 

dz Ghoniem (1990) is used to solve for ring evolution for the case of external straining 
flows. The purpose of the present DVE calculations is both to demonstrate that the 
dumb-bell form of the vortex observed in figures 8 and 9 (with a ‘head’ at each end and 
a vortex pair in the middle) is not just an artifact of the filament method, which is not 
strictly valid when the filaments come very close, and to examine the effect of core 
instability on the vortex at very high straining rates. Shear flow cases have also been 
considered, but since this DVE method does not include the effect of stretching of a 
background vorticity field by the vortex, the calculations are subject to the same 
restriction sR 4 1 on shear rate as stated for the filament calculations at the end of $2. 
For shear rates which satisfied this restriction, the results of DVE runs did not differ 
significantly from the filament calculations, and they are therefore not presented. 

In the DVE algorithm, the vorticity field is discretized by a set of N overlapping 
elements whose control points are convected as material points. Each element consists 
of a ‘blob’ of vorticity, and the integral over all space of the vorticity in a given element 
is equal to the element amplitude 0,. The vorticity is distributed about the element 
control point according to some distribution function, which in our case was chosen 
to have a single lengthscale R, called the element radius. In the current calculations, 
the radii of all elements are equal constants and are set such that the ratio of the typical 
distance between neighbouring elements and the element radius was always less than 
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0.5. The self-induced velocity field is obtained by substituting the discretized vorticity 
field into the Biot-Savart equation and integrating. 

Evolution of the system requires both that the control points are convected by the 
self-induced and prescribed background velocity fields and that the element amplitudes 
are varied to account for vortex stretching. The evolution equation for element 
amplitude is of the form 

3 = n,.vu 
dt x,, 

where u denotes the total velocity field and Vu is evaluated at the control point x,. 
(Although it appears different, (32) is equivalent to the evolution equation used by 
Knio & Ghoniem (1990).) Since neighbouring elements overlap, we note that the 
vorticity at a control point x, is not a,, but is rather the contribution from all of the 
overlapping elements. Because of this overlap, the amplitude equation (32) does not 
satisfy the inviscid vorticity equation anywhere in the flow. However, it has been shown 
(Beale & Majda 1982) that for appropriately chosen element weighting functions, (32) 
converges to a solution of the inviscid vorticity equation as the number of elements 
increases. 

Numerous tests using this algorithm have been presented by Knio & Ghoniem 
(1990) for steady propagation of vortex rings and growth rate of the Widnall instability 
on a vortex ring which give results quite close to predictions by filament methods. We 
have subjected the algorithm to various other tests, such as calculation of the motion 
of an elliptical vortex ring and the vortex core instability of Moore & Saffman (1971), 
in which it is again found to give predictions close to theoretical results. The 
calculations are also found to preserve the ring circulation to within one place in lo4, 
which indicates that the calculations are almost entirely free of numerical dissipation. 

A second-order predictor-corrector method was used to advance the solution in time 
in the DVE calculations. The computations were performed with 200&8000 elements, 
with new elements being formed by element division as the computation progressed. In 
the initial configuration for the DVE computations, we used 17 elements to span the 
vortex core in each ‘row’ and the initial number of rows was set to either 100 (for 
R = 3) or 200 (for R = 5). 

We first consider evolution of a ring in PST with initial ring radius R = 5. (This fairly 
small value of ring radius was chosen to reduce the number of elements required to 
resolve the vortex core.) Computations were performed with the DVE method for e7 
much less than the critical value (estimated from table l), and an oscillating ring 
motion was observed to form which appeared quite similar to that shown in $4 with 
the single filament computations. A plan view of a series of profiles of the ring for a 
case with e = 0.0628 is shown in figure 19 (on the left-hand side). The location of each 
discrete vortex element is plotted with an arrow, and the blackened region thus shows 
the region occupied by the vortex core. The ring evolution in figure 19 appears to be 
similar in form to that shown in figure 8 using the single filament model. In particular, 
in figure 19(b) we notice the formation of ‘heads’ at the ring ends and an elongated 
vortex pair at the ring centre. A side view of the ring (looking along the z-axis) is shown 
on the right-hand side in figure 19, where the direction of propagation is downward. 
We see that the heads tend at first to propagate faster than the centre section, because 
of their greater curvature, but that as the vortex pair in the centre comes closer 
together, the centre pair speeds up and eventually out-distances the heads. In figure 
19(c), the ring is observed to touch itself at two points just behind each head. There 
is also some filamentation of vorticity at the tips of the vortex in this figure, which may 
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FIGURE 19. Plan view (on left-hand side of the figure) and side view looking along the z-direction (on 
right-hand side of the figure) of DVE calculations for a ring in PST with R = 5 and e = 0.0628. The 
plots show (a) the initial configuration ( t  = 0), (b) development of an elongated centre section 
( t  = 31.8) and (c) pinching off of the core near the heads ( t  = 38.9). In the side views, the ring is 
propagating downward. 

be due to the large amount of curvature at the tips. Of course, since the computations 
are based on an inviscid algorithm (with little or no numerical dissipation), we could 
not continue the calculations to observe the reconnection of the vortex sections. 

We next consider a case in which the straining rate is sufficiently high to cause 
instability of the vortex core at the ends of the ring. This type of vortex core instability 
was suggested originally by Moore & Saffman (1971) for stationary vortices in a 
straining flow and extended by Kida (1981) for unsteady vortex cores for both shearing 
and straining flows. These two-dimensional analyses were further extended by Neu 
(1984) for a vortex line filament under uniform axial stretching. In terms of the 
dimensionless variables used in this paper, the Moore & Saffman (1971) study indicates 
that a vortex core subject to a plane-strain flow in its cross-sectional plane will be stable 
for e < 0.30 and unstable for e > 0.30. Similarly, from Kida (1981), a vortex core with 
a shearing flow in its cross-sectional plane will be unstable for s > 0.207 when s and the 
core axial vorticity w are of opposite signs and for s > 1 .O when s and w are of the same 
sign. 

An example of the onset of core instability for a case with a vortex ring in an external 
straining flow is shown in figure 20 for a plan view (looking down the x-axis) of a ring 
in NST with R = 3 and e = 0.628. This value of e is greater than the critical value 0.30 
for core instability. The computations show that the core flattens out in the ( y ,  z)-plane 
into an elongated vortex sheet at the ends, whereas tight vortex filaments are found in 
the centre section. The orientation of the external straining flow is such that the ends 
are subject to the Moore-Saffman instability, but the filaments in the centre are not. 

The results shown in this section, and others like them, lead us to conclude that the 
model described in Q 2 is at least qualitatively accurate (in the context of inviscid theory) 
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FIGURE 20. Plan view of DVE calculation for a fat ring with R = 3 in NST. The strain rate is 
e = 0.628, which is greater than the critical value 0.30 for onset of core instability (Moore & Saffman 
1971) at the ring tips. The plots show (a) the initial configuration ( t  = 0), (b)  the core is stretched by 
the straining flow and the ends begin to flatten out (t = 1.91) and (c) the ends flatten out into vortex 
sheets that continue to stretch with time ( t  = 3.18). 

so long as the criteria for core instability given by Moore & Saffman (1971) and Kida 
(1981) are not exceeded and so long as the filaments are not actually touching. The 
model seems to produce reasonable results even for rather extreme cases where the 
radius of curvature of the ring is of the same order as the core size or where the two 
sides of the ring are in close proximity to each other. 

9. Conclusions 
This paper examines the evolution of vortex rings subject to external straining and 

shearing flows using a variety of theoretical and numerical approaches. The theory, 
which is valid for nearly circular rings and small strain and shear rates, yields 
periodically oscillating solutions for rings that are initially oriented in the same plane 
as the external straining or shearing flow (i.e. the PST and PSH cases). For a ring in 
a straining flow oriented such that the direction of compression is normal to the initial 
plane of the ring (i.e. the NST case), the linear theory indicates that the ring radius will 
grow monotonically with time. For a ring in a shear flow directed normal to the initial 
plane of the ring, the linear theory predicts that the ring will be tilted by the shear flow. 

The linear theory is based on an asymptotic solution for small values of the product 
e7 for straining flow or ST for shearing flow, where 7 is the period of oscillation of a 
nearly circular ring with modes rn = f 2 .  Numerical computations of the nonlinear 
evolution of the ring with both the single filament model and a three-dimensional 
discrete vortex element (DVE) method show that the form of solution predicted by the 
linear theory will still generally be observed even when e7 or s7 are not small, so long 
as these products are not above some critical values (e7),,it or ( ~ 7 ) ~ ~ ~ ~ .  Values of these 
critical values of e7 and s7 are obtained and are shown to be only very weakly 
dependent on initial ring radius R (non-dimensionalized by initial core radius go). 

The PST and PSH cases exhibit elongation of the ring and pinching off when e7 and 
s7 are above their critical values. This pinching off may occur either in a single location 
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at the ring centre, for er in the interval 1 < e7/(e~),,(~ < 1.32, or in two locations near 
the ends of the ring just behind the ‘heads’ for e7 above this range. In the latter case, 
an elongated vortex pair is formed in the central section of the ring. The DVE 
calculations show that at some finite time the two vortices making up this pair will be 
driven together by the external flow, such that the ‘collapsing’ or touching of the 
vortices in the pair occurs all along their axes nearly simultaneously rather than at 
isolated points (as is the case in the usual vortex reconnection problem). 

The NST and NSH cases exhibit extreme elongation of the ring without pinching off. 
When pinching off does eventually occur in the NST case, the aspect ratio is less than 
0.008 and the pinching off happens at two points just behind the ‘heads’ rather than 
in the centre. In the NSH case, one section of the ring becomes oriented at some 
constant angle to the direction of shear flow and stretches with time, in a manner very 
similar to the ‘hairpin’ eddies commonly observed in turbulent shear flows. No 
pinching off of the ring was observed in the computations with the NSH case, although 
it is possible that longer runs or runs with slightly different parameters might have 
produced pinching off near the tips of the ring at extremely long times. The ability of 
a ring to stretch to such extreme elongations when immersed in an external flow 
without pinching off is explained by the ability of vortex stretching to suppress the 
Crow instability. 

Using DVE computations, it is shown that a section of the core which is unstable to 
the external straining flow will spread out into a vortex sheet. The onset of core 
instability and the formation of vortex sheets seems to be well predicted by the two- 
dimensional stability criterion of Moore & Saffman (1971). 
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